x(t)=1的傅里叶变换 对于$f(t)$,其傅里叶变换$F(j \omega)$为 $$ \begin{equation} f(t) \longleftrightarrow F(j \omega) = \int_{-\infty}^{+\infty} f(t) e^{-j \omega t} dt \end{equation} $$ 令$x(t)=e^{-\alpha\left| t \right|},\alpha>0$,则其傅里叶变换为 $$ \begin{align} X(j\omega) & =\int_{-\infty}^{+\infty}e^{-\alpha\left| t \right|}e^{-j\omega t}dt \\[0.45cm] & = \int_{-\infty}^{0}e^{(\alpha-j\omega)t}dt+ \int_{0}^{+\infty}e^{-(\alpha+j\omega)t}dt \\[0.45cm] & =\frac{1}{\alpha-j\omega}e^{(\alpha-j\omega)t}\bigg|_{-\infty}^{0}+\frac{1}{\alpha+j\omega}e^{-(\alpha+j\omega)t}\bigg|_{+\infty}^{0} \\[0.45cm] & =\frac{1}{\alpha-j\omega}+\frac{1}{\alpha+j\omega} \\[0.45cm] & =\frac{2\alpha}{\alpha^2+\omega^2} \\[0.45cm] \end{align} $$ 由于$\lim_{\alpha \rightarrow 0}{e^{-\alpha \left| t \right|}}=1$,因此,当$\alpha\rightarrow0$时 $$ \begin{align} &x(t)=1 \\[0.45cm] &X(j\omega)= \begin{cases} \infty & \text{if } \omega=0 \\ 0 & \text{if } \omega \ne0 \end{cases} \end{align} $$ 可知当$\alpha\rightarrow0$时,$X(j \omega)$为$\omega$的冲激函数,其在定义域上的积分为 $$ \begin{align} {\int_{-\infty}^{+\infty}} \lim_{\alpha \rightarrow 0}X(j \omega) d \omega &=\lim_{\alpha \rightarrow 0}{\int_{-\infty}^{+\infty}}\frac{2\alpha}{\alpha^2+\omega^2}d\omega \\[0.45cm] &=\lim_{\alpha \rightarrow 0}{\int_{-\infty}^{+\infty}}\frac{2}{1+{(\frac{\omega}{\alpha})}^2}d(\frac{\omega}{\alpha}) \\[0.45cm] &=\lim_{\alpha \rightarrow 0}2\arctan(\frac{\omega}{\alpha})\bigg|_{-\infty}^{+\infty} \\[0.45cm] &=2\pi \\[0.45cm] \end{align} $$ 因此,当$\alpha\rightarrow0$时,$X(j \omega) = 2 \pi \delta (\omega)$,即$x(t) = 1$的傅里叶变换为 $$ x(t) = 1 \longleftrightarrow X(j \omega) = 2 \pi \delta (\omega) $$